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A stochastic model of spin glass dynamics 
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NORDITA, Blegdamsvej 17, DK-2100 Copenhagen 0,  Denmark 

Received 14 February 1985 

Abstract. A dynamical theory of spin glasses based on the (assumed) morphology of the 
ground state and on some scaling hypotheses is presented. It yields a closed formula for 
the AC susceptibility which can reproduce the experimentally observed behaviour of ,y in 
both frequency and temperature. The time-dependent susceptibility is also analysed: it is 
found that equilibrium is reached in an extremely slow manner, and might never be observed 
in real experiments. 

1. Introduction 

The frequency and temperature dependence of the AC susceptibility of real spin glasses 
is often explained in terms of super-paramagnetic clusters (Lundgren er a1 1981, van 
Duyneveldt and Mulder 1982) which, however, are neither accounted for by micro- 
scopic theory nor have they been found in numerical experiments. On the other hand, 
all the theoretical effort spent on mathematical, microscopic models has given much 
insight into the physics of spin glasses, but yet no prediction is in substantial agreement 
with the experiments. 

The purpose of this paper is to bridge the gap between the theories which start 
with a Hamiltonian and the experiments; we construct a theory which is ‘quasi- 
phenomenological’ in that it is based on the morphology of the ground state of spin 
glass models and some scaling hypotheses which are so far unproved and yet can (at 
least in principle) be checked by Monte Carlo calculations or other numerical methods. 
The theory predicts a frequency and temperature dependence of the AC susceptibility 
which, for ‘small’ frequencies is in very good agreement with the experimental results, 
and can hopefully be further developed into a true microscopic theory of the spin 
glass phase. We also calculate the time-dependent susceptibility and find that equili- 
brium probably cannot be reached within the lifetime of the observer. 

2. Ground-state morphology and clusters 

Exact results on the morphology of the ground state of some simple spin glass models 
are now available; we conjecture that the same kind of picture also applies to ‘real’ 
three-dimensional systems, and elaborate on the dynamical consequences. 

The ground-state manifold of a * J  model on a square lattice was analysed in great 
detail by Bieche et a1 (1980) and Barahona et a1 (1981) for T=O and different 
concentrations of antiferromagnetic bonds. When the last quantity is sufficiently large, 
the spins form connected patches which maintain the same orientation in all the ground 
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states, a feature which is apparent in the nice graphs of Barahona er al. The same 
ground-state structure has been proposed previously (Binder 1976, Bray and Moore 
1977, Vannenimus er a1 1979) in different contexts and on the basis of Monte Carlo 
simulations, analytical results and hand calculations. More recently, Hertz and Sibani 
(1984) and Sibani and Hertz (1985) constructed two models with random interactions 
and an exactly calculable ground-state manifold; both have the aforementioned mor- 
phology. The connected patches of spins which have the same relative orientation in 
all the ground states have been called ‘packets of solidary spins’. We shall use the 
over-worked but shorter term ‘cluster’ for the same object. A cluster can be flipped 
as a whole at no energy cost, and corresponds to a local symmetry of the model. We 
shall now briefly discuss some properties of these clusters, especially the distribution 
of their sizes, which is closely related to one important concept in the theory of random 
systems, the Parisi overlap density (Parisi 1983). 

Since the set of clusters is clearly closed under union, we have a nested or  hierarchical 
structure of clusters. The smallest clusters, which we call irreducible, label by their 
orientations the pure states of the system at T = 0, and their sizes determine the spatial 
correlations. Indeed, l(ala,)i = 1 if the ith a n d j t h  spin belong to the same cluster, and 
zero otherwise. The Parisi overlap function P ( q )  is by definltion the density of 

where a and p are two randomly chosen pure states, my is the magnetisation at site 
i in the pure state a, and the sum goes over all the N sites in the lattice. Letting Xi 
denote the size of the ith irreducible cluster it is easy to show (Sibani and Hertz 1984) 
that P ( q )  is the density of the stochastic variable 

A,X,+ . .  . A,X, 
Q =  lim 

n + =  X , +  . . .  X ,  ’ 

where each A ,  is a stochastic variable with equiprobable outcomes 51 .  The X,’s depend 
on the couplings and must be described stochastically as well in a random system. 
This brings their distribution into focus. For example, it can be shown (Sibani and  
Hertz 1984) that if ( X , )  < CO, then P(  q )  = 6 ( q ) ,  a so-called trivial Parisi function, while 
(Parisi 1983) in spin glasses P ( q )  should be a smooth(er) function of its argument. 
We should therefore expect ( X , )  = E ;  however, this does not imply ‘infinite clusters’. 
One can have a completely smooth Parisi function with clusters, all of which are finite, 
in the sense that the distribution of their sizes is normalised to one (Sibani and Hertz 
1984). We shall assume that the cluster size distribution is stable on the basis of the 
following ‘evidence’. 

( i )  A stable distribution was found in one exactly calculable example (Sibani and  
Hertz 1984). 

( i i )  Stable distributions are intimately connected with scaling laws and self-simi- 
larity arguments which are often invoked in statistical mechanics. 

(iii) They possess paradoxical properties which seem well suited to describe equally 
paradoxical properties of spin glasses. 

Since stable distributions play an important role in the present theory, and since 
they are not so often used in physics as they deserve, we briefly review their definition 
and some of their properties, in particular those related to the last remarks above. 
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3. Stable distributions 

Following the notation of Feller (1971), to which we refer for the general theory, we write 

d 
U = v. (3.1) 

to indicate that the stochastic variables U and V are identically distributed (henceforth 
ID).  Let XI . * . X, be independent I D  stochastic variables with distribution U. U is 
stable of order cy iff, for any n, 

d xI+.  . .+x, = S, = nl'"X,. (3.2) 

This means that summing any number of stably distributed variables amounts to a 
change of scale, a feature familiar from the Gaussian distribution, which is stable of 
order 2 .  Like the Gaussian, all stable distributions possess a domain of attraction, i.e. 
for I D  X', , . . . , X k  which satisfy some suitable condition, the scaled variable 

Y,, = n""(X{+ XL) (3.3) 

is stably distributed in the limit n + m .  For instance, if the Xl, have variance then 
cy = 2 ,  and Y,, approaches a Gaussian variable. 

Here we are interested in stable distributions of positive variables like cluster sizes 
and waiting times. They have the following properties (Feller 1971 chap XIII):  cy < 1 ;  
a Laplace transform which, apart from scale factors is e-sn ; and a domain of attraction 
which for a given a consists of all distributions with a tail like 1 - t-"L( t ) ,  where L( t )  
is so-called 'slow varying'. This means by definition that L( t x ) /  L( t )  -$I  for t + 00 and 
x fixed. A constant and a logarithm are thus slow varying. 

Each stable distribution belongs to its own domain of attraction; its density goes 
therefore like t - ( u t l )  for large t, and its expectation diverges when cy < 1. Another 
unfamiliar property, which is needed in the next section, is the following: for X, , . . . , X,, 
I D  stochastic variables with stable distribution of order cy, and M,, = max(X,,  . . . , X , ) ,  
S, = ( X ,  + * . . + X , ) ,  it can be shown (Feller 1971, p 465 and reference therein) that 
(S,,/Mn)+ l / ( l -  a )  for n + m ,  which means that the largest of the X,'s with high 
probability dominates the sum. 

Finally, we show by two examples how stable distributions describe self-similar 
(fractal) systems. 

( i )  Consider two clusters A and B of the previous section. Their union is again a 
cluster A u  B = C, of size X c  = X A + X B .  The X's  are stable if X c  4 21'"X,, which 
means that the statistical properties of the system do not depend on the level of 
resolution at which it is analysed, apart from scale factors. This is the probabilistic 
version of scale invariance. 

( i i )  Recently, Palmer et a1 (1984) discussed some hierarchical constrained models 
for glassy relaxation, in order to explain the Kohlraush law. Similar ideas lead 
straightforwardly to stable distributions. Consider a set of 'spin' variables U , ,  . . . , U,, 

and assume that the nth spin cannot flip unless the previous one has. (This is the 
constraint.) It is convenient to arrange the spins in a string of unit lattice constant, 
and imagine that they are flipped by a random walker according to the following rules: 
at time zero all the spins are up and the walker is at the origin. He waits time TI, 
turns the first spin down and moves to the right. At the kth step ( k  = 1,2 , .  . .) the 
following alternatives arise: either go to the left and turn the ( k  - 1)'s spin up again, 
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or  turn the kth spin down and  move to the right. Eventually, the walker arrives at the 
nth spin and  the whole chain is overturned in time 

(3.4) s, = T i + .  ' . +  T,, 

where TI is the time elapsed between the flipping of spins i - 1 and i. Our spins 
U,  , . . . , U, describe the dynamics at  a certain level of resolution, at  which level the 
origin of the waiting times T, remains unexplained. In  a self-similar system each of 
the T,'s arise in the same way as the S,  above, i.e. between any two spins u , - ~  and U, 

a new set of variables U ; .  . . . , U: is defined, and  the U, spin is overturned when the 
flipping of the primed chain is completed. However, then the T,'s are distributed just 
like S, ,  except for time scales, and 

d 
S, = n'"Ti, (3.5) 

which again gives stable distributions. 
This kind of model will be used to describe the flipping of clusters in the next section. 

4. Low-temperature dynamics 

It is reasonable to believe that the ground-state morphology should have deep con- 
sequences on the low-temperature dynamics. (Here and in the following the term 
ground state also includes all the very low-lying states.) Most of the time the spins 
fluctuate in a neighbourhood of a ground state, but thermally excited transitions to 
another ground state may occasionally take place through the successive flipping of 
single (or  small patches of) spins; these transitions can be described, on a coarse time 
scale compared to some microscopic time, as a flipping of whole clusters, without of 
course implying any coherent motion at a microscopic level. 

In this 'coarse grained' picture, the correlation obeys 

( U, ( t 1 U, ( 0)) = * ( (+, i t 1 (+, (0)) (4.1) 

if i and j are in the same irreducible cluster, and 

(U,(r)(+,(o)) = 0 (4.2) 

otherwise. 

state. Simple algebra leads now to 
The upper sign in equation (4.1) holds if the two spins are parallel in the ground 

where S is the total magnetisation, and Px, ( t )  is the probability that a cluster of size 
X ,  has the same orientation at times zero and t. 

We assume that Px, approaches f for t + CO, which means a vanishing correlation 
and no phase transition. Slight changes of notation give a phase transition with the 
same type of relaxation and  AC susceptibility. However, the argument we shall use to 
justify the form of the relaxation function must be abandoned in the latter case. This 
will be discussed in full in the last section of the paper. 
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Based on the considerations of the previous section, we shall assume that the X, 
are stably distributed which, as already noted, means that the largest of them completely 
dominates in (4.3). This is further enhanced by the fact that the smaller clusters relax 
faster, i.e. their 2Pxc( t )  - 1 is close to zero for large times. In conclusion, at long times 
only the largest cluster survives and, to a good approximation 

( l /N)(S( t )S(0) )=2P(t )  - 1, (4.4) 

where the subscript on the P is henceforth omitted. 

invoking the fluctuation dissipation theorem, we find that 
Identifying (4.4) with the EA order parameter (Edwards and Anderson 1975), and 

=2(1 - i w F ( i w ) ) ,  (4.5) 

where f (  s )  = j: eCs'f( t )  dt  for any function of time and any complex s such that the 
integral exists. 

In order to calculate P( t ) ,  we introduce the probability density for the nth flip at 
time t ,  A,(?), and the probability that the cluster has flipped exactly n times at time 
t ,  Pn( t ) .  Since A,( t )  is the probability density that the waiting time between two jumps 
is t and Po( t)'the probability of waiting at least time t for the next jump, we have 

whence 

1 -sFo(s) = & s ) .  (4.7) 

By summing probabilities, we also obtain 

33 

p ( t )  = 1 pzn(t) 
n = n  

n 3 2  

n 3 l  (4.10) 

and, taking Laplace transforms of (4.8)-(4.10), summing a geometric series and using 
(4.7), we arrive at 

1 1  
F ( S )  =- 

s 1 + A l ( S ) .  
(4.11) 

The AC susceptibility can, by (4.5), be expressed in terms of the fundamental quantity 
AI([) as 

(4.12) 
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and the power spectrum of ( S (  t ) S ( O ) )  is 

(4.13) 

where A ( i w )  = A;(iw) -iAy(w). 

susceptibility a s t  
Denoting the inverse Laplace transform by T-’, we also define the time-dependent 

(4.14) 

which (by the ‘Abelian theorem’ lim,+=f( t )  = lims+o sr(s)) satisfies the relation 

1 
lim ,y( t )  = lim x A C ( w )  = ,yes = - 
1 - 0 :  U - 0  T ’  

(4.15) 

The interesting feature of x ( t )  is of course not the limiting value but the manner in 
which it is approached, which is ‘pathologically’ slow, as discussed later. 

In principle A,([) should be calculated on the basis of a microscopic description 
of the system, This is not feasible and might also be unnecessary. We adopt the point 
of view that the form of A, does not depend upon the details of the dynamic, but 
rather on some generic property of the spin glass ‘phase’, which we identify with 
self-similarity, as explained below. 

We have already noted in 9 2 how hierarchically constrained models naturally lead 
to stable distributions. Here we sketch the possible connection with spin glasses in a 
little more detail in order to justify the assumption that A , ( t )  should be stable. We 
start with the ‘many-valley’ picture of the energy as a function of the phase space 
variables, which is sometimes used in the literature (Palmer 1982, 1983, Morgenstern 
and  Horner 1982, Morgenstern and Binder 1979), and which in the present context 
has the following meaning: in order to go from one ground state to the next we have 
to flip a cluster, which means climbing over a large energy barrier. A closer analysis 
of the barrier reveals the existence of local minima, or valleys. These valleys split 
again into smaller valleys, separated by barriers, and  so forth through many orders of 
magnitude. We now fix the level of resolution, and see only a given number N of 
local minima, each corresponding to some configuration of the spins, which can be 
taken as coarse grained variables, o r  ‘pseudospins’, as explained below. The temporal 
sequence in which the minima are visited defines a path from one ground state to the 
other. If only one path (the ‘easiest’ one) dominates, we obtain the previously discussed 
constrained dynamics by translating ‘pseudospin ‘ i ’  is down’ into ‘the ith minimum 
has been reached and we can proceed further’. In general, the considerations of 9 2 
apply to each path separately, and  the flipping time associated with path A is stably 
distributed. At the end one should average over all the paths, which requires an  
adequate parametrisation of the paths and  the definition of a measure. At present it 
is not clear how this should be done, and we just note that the ‘randomisation’ of the 
path index A and the averaging over A may be the mechanism which produces the 
very small order Q of the stable distribution of flipping times which is needed to 
explain the experimental data. 

t Note 
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5. Numerical results and comparison with the experimental results 

The Laplace transform of stable distributions of positive variables is analytically known 
(cf 0 2); in our case we have 

A,(s) =e-'* (5.1) 

apart from scale factors. The temperature dependence of the parameter a ( T )  (the 
order of the distribution) is sometimes omitted in order to simplify the notation. 

Taking 

s = iwc( T ) ,  (5.2) 

where w is the frequency and c( T )  is a temperature-dependent scale factor, we get by 
(4.12) 

2 exp(-w"c( T)" exp(irra/2)) 
T 1 +exp(-w"c(T)" exp(irra/2)) '  XAC(w, T )  =- (5.3) 

The above equation has many possible behaviours according to the magnitude of a. 
However, only a << 1, which we assume, is consistent with the experimental findings. 
For reasons which will be clear shortly, we now write 

f (  T )  = c( T)" 'T)  (5.4) 

and expand all the other functions of a in a Taylor series, keeping only up to the 
first-order term. Then W "  = 1 + a In w and 

whence the relation 

rr dX' x"= -- - 2 d l n o  (5.6) 

follows. The relation has been previously derived by phenomenological arguments 
and experimentally verified in a variety of systems (van Duyneveldt and Mulder 1982, 
Lundgren et a1 1981, Pappa et a1 1984). Another check on the magnitude of a comes 
from the fact that, according to (5.5), 

This quantity is found to be extremely small (Mulder et a1 1981, 1982, Pappa 
et a1 1984) at temperatures higher than T, and rather small (2 x 10-2-10--') around T,. 
In this region, however, the dependence on f (  T )  is significant, as will be seen later. 
Finally, it follows from (4.13) that the auto-correlation function is, in the same 
approximation as in (5.5), 

%(U)= n a ( T )  exp(-f(T))(l /w) (5.7) 

the ubiquitous 1/f noise. In the time domain this means a logarithmic decay of the 
autocorrelation function. Experimentally (Mezei 1983) the long time behaviour of 
(S(t)S(O)) (or rather its spatial Fourier transform, which does not affect the argument) 
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seems to be of the form k - k' In t over many decades. As an approximation, we take 

( S ( t ) S ( O ) ) =  k-2a(T)exp(-f(T))  In t (5 .8 )  

for all times such that the expression is positive, and zero otherwise. The cosine 
transform of (5 .8)  is 

where Si is the sine integral. When a is very small exp(k /a)  is very large and 
S i ( e k l a ) = t r ,  yielding (5 .7 ) .  Note that the slope of (5 .8)  in a semilog plot is 
2 a (  T )  exp(-f( T ) ) ,  which is small and increases with the temperature, in agreement 
with the experimental curves (Mezei 1983). 

We conclude that much experimental evidence supports our assumption on the 
smallness of a. In order to discuss the temperature dependence of the susceptibility, 
the form of a (  T )  and c( T )  must be specified. We assume that c(  T )  - exp( To/ T ) ,  
where, according to (5.4) 

(5.10) 

where k is a constant. 
The form of the scale factor can be justified by noting that in order to flip a cluster, 

a potential barrier must be crossed. c( T )  should therefore contain an Arrhenius factor, 
and a T dependent prefactor as well. This must, however, be raised to a very small 
power a, and behaves almost like a constant over the range of temperatures of interest. 
The exponential term, on the contrary, survives, and since To need not be small, the 
shape of a(  T )  is amplified and leads to large effects. This is the reason why c( T)" 
was not expanded in the first place. 

The form of a (  T )  was found empirically by trying to fit the susceptibility of AgMn 
(Mulder and van Duyneveldt 1982). In (5.10) the parameters are taken as k=0.95, 
T0=200, a ( T ) =  15/100(1/T2) for Ts4.295,  and for T<4.295 a(T)=5/1000 T 
(1.5146 -0.2645 T ) ,  a differentiable function of T with a maximum at T -  3 K. It must 
be emphasised that other choices of a almost surely would provide even better fits, 
although the overall shape should be roughly correct (but not for T=s 1 ,  where it leads 
to a local minimum of x'( T ) ) .  The correct a (  T )  decreases less steeply in this region. 
In the lack of theoretical underpinnings, we have chosen not to pursue the 'numerologi- 
cal' aspect any further. 

Having specified all the parameters, the frequency and temperature dependence of 
xAC(w,  T )  can be calculated through (5.3), while the relaxation of ~ ( t )  in the time 
domain is described by (4.14). Since the Laplace inversion cannot be performed 
analytically and in closed form, we exploit the smallness of a and write A,(s)  = 

exp( -f( T ) s " )  f exp( -f( T ) ) (  1 + af( T )  In( s)). Expanding the denominator to first 
order in a and inverting the transform, we finally get (with y equal to the Euler constant) 

an approximation which holds as long as a (  T )  In( t )  is small. The limit t = 03, xes = 1 /  T 
cannot therefore be recovered in the above formula. Some experimental results confirm- 
ing the logarithmic dependence on t are found in Lundgren et a1 (1982). 
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0.25 

The results are graphically displayed in figures 1 and 2. In figure 1 x’ is drawn as 
a function of the temperature for four different frequencies: w = 10, 100, 1000 and 10’. 
The results are similar to the measured x’ for AgMn (Mulder and van Duyneveldt 
1982); the peak should be slightly sharper, however. We note several features quite 
generally observed in spin glass susceptibilities: a well defined maximum at Tg( w ) ,  
which moves to the left when w decreases; almost no frequency dependence in the 
high-temperature region ( T > T,) ; the different curves separate close to their maxima. 
In the present framework this is due to the vanishing of a( T )  (and x”( T ) )  at high 
temperatures, as apparent from ( 5 . 5 ) .  The lower curve in figure 1 is the out-of-phase 
component x” magnified 20 times (the absolute magnitude of x” and the separation 
between the different X I ’ S  can be changed by rescaling a, and were chosen for graphical 
convenience). The shape is also similar to what is experimentally found: there is a 
very small frequency dependence (of second order in a), and as a function of 

I 

I , , , ,  

0 5 10 15 20 
T 

0.20 

v) 
c ‘i 0.15 

; 0.10 

h L 

n 
< L 

0.05 

Figure 1. Curves A, B, C and D show the real part of the AC susceptibility as a function 
of the temperature for w = 10, 100, 1000 and lo8 s-’, respectively. The last curve is the 
out-of-phase component, magnified 20 times, for w = 10. All the curves are calculated 

- A 
B 

- c 

- 

- 

0.25 

0.20 

v) 
c ‘i 0.15 

; 0.10 

h L 

n 
< L 

0.05 

- A 
B 

- 

- 

- 

: 
0 5 10 15 21 

T 

Figure 2. The time-dependent susceptibility as a function of the temperature, according 
to the approximate equation (5.11). Curves A, B and C correspond to f = lo9, lo6 and 
io3 s, respectively. 
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temperature x‘‘ vanishes (almost) in the high-temperature region and  has a maximum 
somewhat below T g .  Since a (  T )  and x”( T )  are closely related, as shown by ( 5 . 5 ) ,  the 
experimental form of x“ was actually used to guess a (  T ) .  Conversely, the soundness 
of the choice of a( T )  and C( T )  is confirmed by the fact that it yields the correct 
shape of both x’ and x”. 

In figure 2 x ( t ,  TI ,  as given by (5,111, is shown as a function of T for t = IO’, lo6 
and lo’s, at which time the validity of (5.1 1) begins to be questionable, since a (  T )  In t 
is not very small. The approach to equilibrium seems extremely slow: we emphasise 
that xeq=xAC(w = O ) =  1 /T;  nevertheless, for f =  109s there is still a very clear 
maximum. The same picture holds in the frequency domain down to at least w = 
and we conjecture that equilibrium cannot be observed within the lifetime of the 
experimentalist. We also note that the maximum of x ( t ,  T )  is more flat than in the 
frequency domain. Perhaps the observed ‘flatness’ of xes (Lundgren 1984) can be 
explained within the present theory as an  effect of incomplete relaxation. 

6. Summary and conclusions 

In this paper we propose a new theory for the dynamics of spin glasses based on the 
following ideas. 

( i )  The morphology of the ground state is responsible for the typical features of 
the spin glass susceptibility. The morphology is assumed to be similar in three- 
dimensional spin glasses and in the one- and two-dimensional models which can be 
analysed exactly. 

( i i )  To  a good approximation the relaxation is described at long times by the flipping 
of ‘clusters’, i.e. groups of spins with the same relative orientation in all ground states. 
This is formalised by introducing the probability density for flipping at  time t ,  A , (  t ) ,  
which is the crucial quantity in the dynamics. 

(iii) Stable distributions are the appropriate mathematical tool to describe random 
self-similar systems; we assume that both cluster sizes and flipping times have stable 
distributions, adopting the view that spin glasses are, in several ways, ‘fractal’ objects. 

From these assumptions the analytical formula (5.3) for xAC follows. The time 
dependence of the susceptibility can be found by an  approximative Laplace inversion 
and is given by (5.11). In the formalism two unknown functions of the temperature 
appear: a (  T ) ,  the order of the stable density A , ( t ) ,  and a scale factor c(  T ) .  There is 
convincing experimental evidence that a (  T )  should be very small through the whole 
range of T, since this leads to the correct frequency dependence of ,y, and to the right 
form of the power spectrum % ( U ) .  

In order to discuss temperature dependences, a ( T )  and c ( T )  must be specified. 
Close agreement with the experimental results is found by assuming that a (  T )  has a 
maximum somewhat below T g ,  and that c(  T )  has the Arrhenius form. 

The approach to equilibrium can be studied by letting w -, 0 in (5.31, or in the time 
domain by taking t large in (5.1 1). In  the last case we cannot go all the way to infinity 
because (5.11) is only valid as long as a In t<<  1. This includes very large times, 
however. In both the frequency and time domain, we find evidence that equilibrium 
is unattainable in experiments. Since the maximum of x gets gradually less sharp with 
decreasing w (increasing t ) ,  we conjecture that all the experimental data, including a 
‘flat’ piece of xes( T ) ,  can be explained within the present theory in terms of incomplete 
equilibrium. 
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This theory can be modified to include a phase transition by multiplying A,(  t )  by 
a constant y < 1. This yields a new, defective, density of flipping times, meaning that 
a cluster may never turn. However, the self-similarity argument used to justify the 
stability of A,  fails, since a defective density folded n times with itself approaches 
zero when n +cc (see (3.4) and (3.5)). Besides, this assumption might be unnecessary, 
although the opinion that three-dimensional spin glasses have a phase transition seems 
to be favoured at the moment. Ogielski and  Morgenstern (1984) recently performed 
a Monte Carlo simulation on a *.J model in three dimensions, finding evidence for a 
phase transition. If our assumption that cluster sizes are stably distributed is correct, 
the largest cluster has the same order of magnitude as the whole system (see § 2)  and 
‘macroscopically’ large patches of ordered spins appear in a Jinite sample. In the 
thermodynamic limit, however, all the clusters stay finite, and  so d o  the potential 
barriers which must be closed to flip them, in contrast to what, for instance, happens 
in a ferromagnet. The difference is rather subtle, and cannot be seen in Monte Carlo 
simulations of samples which, although rather large, are several orders of magnitude 
smaller than real spin glasses. It is quite possible that the Monte Carlo calculations 
of Ogielski and Morgenstern could be re-interpreted in the light of this approach. 
Incidentally, they do  observe ‘occasional coherent, rigid reversals of the entire lattice 
in the course of very long simulations’ (Ogielski and Morgenstern 1984). 

As mentioned in the introduction, our approach rests on some assumptions on the 
ground-state morphology which so far have only been proved for simple one- and  
two-dimensional models, and which should be checked for more realistic cases in 
order to substantiate the theory. Furthermore, a theoretical justification of the form 
of a (  T )  and c( T )  is highly desirable. Presumably, dimensionality plays an important 
role here. 

Let us finally emphasise that this theory is the very simplest one can conceive in 
terms of cluster flipping: it is essentially a T=O theory, in that the only effect of 
temperature is to induce ‘tunnelling’ between the different ground states. Nevertheless, 
it seems to capture some essential elements of the spin glass behaviour; also it is a 
satisfactory and unique feature of this approach that the T = 0 equilibrium properties 
(non-trivial P ( q ) ,  clusters of the same order of magnitude as the whole system) and 
the slow decays are intimately connected. In  the other approaches suggested, the slow 
relaxation is just an unexplained inconvenience that keeps one from observing the 
equilibrium state. 
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